Teleidoscope UAV SOT Benchmark

Benchmark of non-deep learning state of the art CPU based visual tracking algorithms commonly used by UAVs.

DATASET NAME: VisDrone2019-SOT-test-dev

FRAME COUNT: 32,958

RESOLUTION RANGE: 960x540 - 2688x1512

AVG GROUND TRUTH SIZE: 47x63 (normalized to the average resolution of each frame 1476x830)

Purpose

The purpose of this document is to compare Teleidoscope's core Visual Tracking algorithm (RAD) to other state of the art non-deep learning tracking algorithms capable of running on CPU, making them popular choices for UAVs.

The dataset selected was chosen because it fits a wide variety of common scenarios for UAVs.

Testing Conditions

Each tracker was initialized using the first bounding box of each sequences ground truth and was not reinitialized at any point. The intent is to provide a better metric of the relationship between the precision and long-term tracking success scores without ground truth reinitialization.

This provides results that are most representative of real-world environments.

Summary of Results

Teleidoscope's Visual Tracking Algorithm (RAD) achieved a higher precision and higher long-term tracking score, and lower occlusion recovery error when compared to other trackers considered state of the art.

These superior results are due to RAD's auto calibrating, self-diagnostics feature which allows it to adapt to a wide variety of targets in different environments.

Results	

TRACKER	SUCCESS SCORE	PRECISION SCORE	RECOVERY ERROR	INTERSECTION	SPATIAL OVERLAP
RAD	88.39%	91.06%	26.7305	0.834782	0.567633
CSRT	78.59%	81.71%	63.7435	0.800988	0.478049
KCF	49.09%	51.13%	122.856	0.547186	0.298008
MIL	46.83%	52.02%	145.553	0.486872	0.275398
TLD	32.94%	33.98%	415.423	0.299427	0.17223

Teleidoscope

Address

KCF

0.34

Teleidoscope

Estimate (E): The estimate location of the object

Ground Truth(GT): The true location of the object

True positive(TP): Estimates matches the ground truth determined by the scoring threshold criteria

False positive(FP): Estimates **do not** match the ground truth determined by the scoring threshold criteria.

Success Score: TP / Number of frames

TP Threshold Criteria = Spatial overlap greater 0.33

Precision Score: TP / (TP + FP).

TP Threshold Criteria = Distance between E and GT less than 20px while reporting a successful track.

Occlusion/Recovery Error: Mean distance from ground truth during occlusion and after occlusion. Approximates how well a tracker estimates under occlusion and how accurately it will recover (if supported). Lower is better.

Perfect: distance == 0 Very Good: distance < sqrt(AGT_area)/2 = 27 Good: distance < hypot(AGT_width, AGT_height)/2 = 39 (Recovery very likely) Okay: distance <= hypot(AGT_width, A_height) = 79 Poor: distance > hypot(AGT_width, A_height) = 79

Intersection: Average area of intersection between E and GT over the min box. Approximates how much of the tracked patch is centered on the ground truth.

Spatial Overlap: Mean intersection over union which approximates how well the shape matches the ground truth. A table of spatial overlap examples is below. The white cross and blue box is the ground truth and green box and blue cross is the estimated position.

Additional Considerations

This benchmark specifically focuses on quality and ability to maintain track over long periods in common UAV scenarios. It **does not** consider resource utilization which is covered in a separate benchmark.

Resource utilization is an important consideration for UAVs, and should be considered along with quality metrics. Resource utilization benchmarks include:

- CPU utilization
- Memory utilization
- Frames per second/ Estimate Duration

In addition to quality of track, Teleidoscope has focused on minimizing resource utilization. This is covered in a separate benchmark.